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We give a self consistent and simplified proof of the (asymptotic) vanishing of
the Beta function in d=1 interacting Fermi systems as a consequence of a few
properties deduced from the exact solution of the Luttinger model. Moreover,
since the vanishing of the Beta function is usually ‘‘proved’’ in the physical lit-
erature through heuristic arguments based on Ward identities, we briefly discuss
here also the possibility of exploiting this idea in a rigorous approach, by using
a suitable Dyson equation. We show that there are serious difficulties, related to
the presence of corrections (for which we get careful bounds), which are usually
neglected.
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1. INTRODUCTION

Inspired by a previous deep analysis by Tomonaga, forty years ago
Luttinger (13) introduced his model, describing two kinds of d=1 fermions
with linear dispersion relation and interacting via a short range potential,
as a model for d=1 metals. The solution of the model given in ref. 13 was
however incorrect and a true solution was given a bit later by Mattis and
Lieb. (20) They showed that the model can be exactly reexpressed in terms of
a free bosonic model; this implies that all the correlation functions of the
model can be computed (an explicit expression can be found in ref. 3).
However the solution given in ref. 20 seems to depend crucially from the
details of the Luttinger model Hamiltonian, and even apparently harmless
and physically irrelevant modifications of it completely destroy the possi-
bility of an exact mapping into a free bosonic model. This is unlucky,



because a large number of important models, for which an exact solution is
lacking (at least for the correlation functions), can be reexpressed in terms
of interacting fermionic models and it is physically very reasonable to
assume that they are in the same class of universality of the Luttinger
model (or of its massive version, which is however not solvable). We
mention the Heisemberg models for spin 12 quantum spin chains, like the
XXZ or the XYZ chain, see refs. 1 or 15, or classical bidimensional spin
lattice models, like the Eight vertex or the Ashkin–Teller models, see
refs. 15 or 21. More recent examples are models of vicinal surfaces (24) or the
domain wall theory of commensurate-incommensurate phase transitions in
two dimension. (22) In all such cases the mapping into a fermionic theory,
and the subsequent assumption that it belongs to the same class of univer-
sality of the massless or massive Luttinger model, seems a very powerful
method (sometimes the only one) to get information about the asymptotic
behavior of the correlations.
In the last decade, starting from, (2) a perturbative approach based on

Renormalization Group methods has indeed achieved the goal of using the
Luttinger model exact solution to get the asymptotic behavior of the corre-
lations for many of such models at low temperature (for a recent review,
see ref. 11). Among recent achievements is the computation in ref. 5 and 6
of the spin-spin correlation along the third axis of the XYZ model (with a
possible inclusion of next nearest neighbor interaction) in a magnetic field;
and the computation in refs. 16 and 17 of the energy-energy correlation
and the specific heat near the critical point of many classical spin models
coupled by quartic interactions, including the Eight-vertex and the Ashkin-
Teller model. Such results convert (at least partially) into rigorous proofs
the deep physical intuitions in refs. 1, 15, or 21.
The analysis starts by writing the generating function of the correla-

tions as a Grassmann integral, and by expressing the Grassmanian inte-
gration as the product of many independent integrations, each of them
describing the theory at a certain momentum scale. This allows us to
perform the overall functional integration by iteratively integrating the
Grassmanian variables of decreasing momentum scale. After each integra-
tion step one gets an effective theory similar to the initial one, the main
differences being that the remaining Grassmanian integration is renor-
malized (the renormalization being defined in terms of a few parameters,
renormalization constants, related to the critical indices of the model) and
the relevant part of the interaction (which is described in terms of a few
other parameters, the running coupling constants) (RCC in the following) is
modified. The method works if the RCC remain small at each step; in fact,
in this case, the correlations and the critical indices can be written as con-
vergent power series in the RCC.
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The RCC obey a complicated set of recursive equations, whose right
hand side will be called, as usual, the Beta function. In order to prove that
they do not grow as the momentum scale goes to zero, the Beta function is
decomposed into two terms; the first term is common to all such models
and is essentially equal to the Luttinger model Beta function, while the
other one is model dependent. It turns out that the first term is asymptoti-
cally vanishing, even if the dimensional bounds following from the multi-
scale analysis do not support this result; we call this property ‘‘vanishing of
Luttinger model Beta function.’’ On the contrary, the dimensional bounds
are sufficient to control the effect of the second term on the flow of the
RCC in all the models we can successfully analyze, so that, by using a
suitable iterative procedure, it is possible to show that the RCC stay indeed
small on all scales. The details on the bound of the second term and on its
(of course essential) role in explaining the physical properties of the differ-
ent models, are given in the papers referenced before. The point is that a
property valid for the Luttinger model (the vanishing of the Beta function)
is used to prove that the RCC remain small (and so the expansion for the
correlation function is convergent) in a number of not solvable models.
The main result of this paper is the proof of the vanishing of the

Luttinger model Beta function (see Theorem (3.1)), which is at the core of
the above results. Although a proof of this crucial point is already sketched
in the literature, see refs. 4 and 7, it is in some point unnecessarily compli-
cated and not all the details are published. We present here a new proof,
which is based on the same ideas but which is much simpler. We shall give
all the details, except those which can be taken from ref. 5 without any
further discussion, as the bound (2.43) and Lemma 3.2.
The main technical difficulty in proving this result is that the Beta

function is written by a convergent expansion and each order is obtained
by summing up a certain number of terms; the vanishing of the Beta func-
tion is a consequence of certain complicated cancellations occurring at
every order. While one can easily check by direct computation that such
cancellations occur at lowest orders, to prove that they occur at every order
looks to us essentially impossible. Our proof is instead based on the analy-
ticity properties of the correlation functions of the Luttinger model as
functions of the interaction l and of a parameter d describing the difference
between the Fermi velocity and an arbitrary fixed value, say 1; such prop-
erties are deduced by the Luttinger model exact solution in refs. 3 and 20.
The proof is in Sections 2 and 3. In particular in Section 2 we present

our Renormalization Group analysis of the Luttinger model with a local
interaction, a fixed ultraviolet cutoff and an arbitrary infrared cutoff. Note
that the interaction locality for the model with ultraviolet cutoff is chosen
only for convenience, as any short range interaction would produce similar
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results. The outcome of the RG analysis is that the Schwinger functions are
represented as expansions in terms of two sequences of RCC, one related
with the interaction strength at different momentum scale, the other with
the Fermi velocity (there is no renormalization of the Fermi momentum in
the Luttinger model); if the RCC are small the expansions are convergent,
and by them very careful bounds on the large distance asymptotic behavior
are obtained. A similar analysis can be repeated for the Luttinger model with
no cut-offs, due to the results in refs. 5 and 9, as explained in Section 3.2
In Section 3 we prove that indeed the RCC are bounded. First of all,

we remark that, if the RCC of the Luttinger model are small, the same is
true for the RCC of the Luttinger model with cut-off. This is due to the
fact that the Beta functions of the Luttinger model with or without cut-off
differ by terms which go to zero exponentially, if the momentum scale go
to zero. We consider then the RCC of the Luttinger model in a finite
volume L and we show, as a consequence of the analysis in Section 2, that
there is a quantity, depending only on two and four points Schwinger
functions computed at distances of order L, which is proportional to the
running coupling constant which measures the effective interaction strength
on scales of order L−1, up to small corrections, see Lemma 3.3. The crucial
point is that such quantity can be also computed by the explicit expression
of the Luttinger model Schwinger functions, obtained from the exact solu-
tion (which is valid also at a finite volume L), and it turns out that such
quantity is of order l, see (3.12). This, togheter with the fact that the RCC
for the model in a volume L are close to the one in the infinite volume (see
(3.33), implies that the RCC of the infinite volume Luttinger model are well
defined and of order l on all scales, see Lemma 3.4. In this proof an
important role is played by a Ward identity, see (3.40), which allows us to
control the Fermi velocity renormalization in terms of the interaction
strength renormalization. Finally, there is a simple argument, explained at
the end of Section 3, proving the vanishing of the Beta function for the
Luttinger model (and so for the model with infrared and ultraviolet cut-
off ) as a consequences of the above results on the RCC; this completes our
proof.
In Section 4 we discuss the interesting question if the vanishing of the

Beta function can be proved without any use of the Luttinger model exact
solution, but directly in the framework of a functional integral analysis.
The interest of such problem is in the possibility that the methods used to
get this result could be extended to other problems, where an exact solution
is missing, like in d > 1. A positive answer to this question was given in the
physical literature, by a clever combination of Ward identities and Dyson
equations in a Renormalization Group scheme, see refs. 8, 23, and in
particular. (18, 19) However the presence of cutoffs in all the models one is
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interested in (the lattice or a non linear dispersion relation) breaks neces-
sarily the gauge invariance by adding corrections to the Ward identities,
which are neglected in the physical literature (they correspond to next to
leading corrections), but should be taken into account in a rigorous
approach. We have recently set up a formalism, see refs. 5 and 6, which
allows us to derive Ward identities rigorously and to obtain careful bounds
on the corrections; we used them to prove the vanishing of the density-
density critical index in the XYZ model, so proving also a conjecture in
ref. 24.
Encouraged by this result, we try to mimic the heuristic proof of the

vanishing of the Beta function, by taking into account the corrections due
to the cutoffs. We are indeed able to write a Dyson equation which takes
into account the effect of the ultraviolet cutoff, and we get careful (essen-
tially optimal) bounds on all the terms appearing in our Ward identity; a
brief description of these attempts is given in Section (3). It turns out that,
if one neglects the corrections due to the ultraviolet cutoffs, our Dyson
equation reduces to the one in ref. 19, used to deduce the vanishing of the
Beta function from dimensional arguments, that our analysis make rigor-
ous. Hence, if we could prove that such corrections are indeed negligible in
a suitable sense, we would get the expected result for our question.
However, this is not the case; we perform a rather detailed analysis of

the corrections and we conclude that they are not negligible, in the sense
that their presence prevents the possibility of proving the vanishing of the
Beta function. The only open possibility, as we think that our estimates for
the corrections can not be improved, is that it would be possible to make
the corrections negligible, by moving the ultraviolet cutoff to infinity and
by renormalizing the model, so that the effective interaction on momentum
scale 1 stays bounded. This conjecture is based on the remark that the
Ward identities are formally exact in the limiting theory (here the interac-
tion locality is essential) and on the fact that the conjecture has been
proved, at level of perturbation theory, in a similar problem. (12) To prove
this conjecture is not a simple task, as it is equivalent to study the ultra-
violet problem in a relativistic quantum field theory (the Thirring model)
and we did not yet face it seriously, but the analysis of Section 4 would
certainly be an essential step. This is why we decided to publish here at
least a sketch of our actual results.
We now give a brief outline of the following sections. In Section 2.1

we define precisely the Luttinger model with cutoff. In Section 2.2 we
describe the corresponding RG expansion for the Schwinger functions and
the definition of the Beta function; the main point in this section is equa-
tion (2.42) and the corresponding bound (2.43). The vanishing of Luttinger
Beta function is proved in Section 3, using the arguments discussed before.
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The gauge transformation and the corresponding Ward identities are dis-
cussed in Section 4.1, while the Dyson equation is described in Section 4.2.
The consequences of Ward identities and Dyson equation and their relation
with the main problem of this paper are briefly discussed in Section 4.3.
Some bounds used in this discussion are proved in the Appendix A1.

2. RENORMALIZATION GROUP ANALYSIS

2.1. The Model

We consider a one dimensional system of two kinds of fermions with
linear dispersion relation and interacting with a local potential. The pres-
ence of an ultraviolet and infrared cutoff makes the model not solvable; if
the cutoffs are removed and the local potential is replaced by a short-
ranged one the model coincides with the Luttinger model.
Given the interval [0, L], the inverse temperature b and the (large)

integer N, we introduce in L=[0, L]×[0, b] a lattice LN, whose sites are
given by the space-time points x=(x, x0)=(na, n0a0), a=L/N, a0=b/N,
n, n0=0, 1,..., N−1. We also consider the set D of space-time momenta
k=(k, k0), with k=

2p
L (n+

1
2) and k0=

2p
b (n0+

1
2), n, n0=0, 1,..., N−1. With

each k ¥D we associate four Grassmanian variables k̂[h, 0] sk, w , s, w ¥ {+, −},
where h is a negative integer related with the infrared cutoff, see below. The
lattice LN is introduced only for technical reasons, so that the number of
Grassmann variables is finite, and eventually the limit NQ. is taken (and
it is trivial, see refs. 5). Then we define the functional integration > Dk[h, 0]

as the linear functional on the Grassmann algebra generated by the
variables k̂[h, 0] sk, w , such that, given a monomial Q(k̂) in the variables k̂[h, 0] sk, w ,
its value is 0, except in the case Q(k̂)=<k ¥D, w=± k̂[h, 0]−k, w k̂[h, 0]+k, w , up to a
permutation of the variables. In this case the value of the functional is
determined, by using the anticommuting properties of the variables, by
> Dk[h, 0]Q(k̂)=1 . We also define the Grassmanian field on the lattice LN
as

k[h, 0] sx, w =
1
Lb

C
k ¥D

e iskxk̂[h, 0] sk, w , x ¥ LN. (2.1)

Note that k[h, 0] sx, w is antiperiodic both in time and space variables.
The Schwinger functions are defined by

S(x1, s1, w1;...; xs, ss, ws)=
> P(dk[h, 0]) e−V(k

[h, 0])< s
i=1 k[h, 0] sixi, wi

> P(dk[h, 0]) e−V(k
[h, 0])

, (2.2)
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where

V(k[h, 0])=l F dx k[h, 0]+x,+ k[h, 0]−x,+ k[h, 0]+x, − k[h, 0]−x, − (2.3)

and

P(dk[h, 0])=N−1Dk[h, 0]

· exp 3 − 1
Lb

C
w=±1

C
k ¥D

Ch, 0(k)(−ik0+wk) k̂[h, 0]+k, w k̂[h, 0]−k, w
4 ,
(2.4)

with N=<k ¥D [(Lb)−2 (−k20−k
2) Ch, 0(k)2] and > dx is a shorthand for

‘‘aa0 ;x ¥ LN
.’’ The function Ch, 0(k) acts as an ultraviolet and infrared

cutoff and it is defined in the following way. We introduce a positive
number c > 1 and a positive function q0(t) ¥ C.(R+) such that

q0(t)=˛
1 if 0 [ t [ 1,
0 if t \ c0, 1 < c0 [ c,

(2.5)

and we define, for any integer j [ 0,

fj(k)=q0(c−j |k|)−q0(c−j+1 |k|). (2.6)

Finally we define

qh, 0(k)=[Ch, 0(k)]−1=C
0

j=h
fj(k), (2.7)

so that [Ch, 0(k)]−1 is a smooth function with support in the interval
{ch−1 [ |k| [ c}, equal to 1 in the interval {ch [ |k| [ 1}. In the following
the ultraviolet cutoff is supposed fixed, while the infrared cutoff is
supposed to vary and at the end we are interested in the limit hQ −..

2.2. The Tree Expansion

We call k[h, 0] simply k and we introduce the generating functional

W(f, J)=log F P(dk) e−V(k)+;w > dx[Jx, wk
+
x, wk

−
x, w+f

+
x, wk

−
x, w+k

+
x, wf

−
x, w]. (2.8)

The variables fsx, w are antiperiodic in x0 and x and anticommuting with
themselves and ksx, w, while the variables Jx, w are periodic and commuting
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with themselves and all the other variables. The Schwinger functions can be
obtained by functional derivatives of (2.8); for instance

G2, 1w (x; y, z)=
“

“Jx, w

“
2

“f+y, w “f
−
z, w

W(f, J)|f=J=0, (2.9)

G2w(y, z)=
“
2

“f+y, w “f
−
z, w

W(f, J)|f=J=0, (2.10)

G4w(x1, x2, x3, x4)=
“
2

“f+x1, w “f
−
x2, w

“
2

“f+x3, −w “f
−
x4, −w

W(f, J)|f=J=0. (2.11)

The functional integration of the generating functional (2.8) can be
performed iteratively in the following way. We prove by induction that, for
any negative j, there are a constant Ej, a positive function Z̃j(k) and func-
tionalsV (j) and B (j) such that

eW(f, J)=e−LbEj F PZ̃j, Ch, j (dk
[h, j]) e−V

(j)(`Zj k
[h, j])+B

(j)(`Zj k
[h, j], f, J), (2.12)

where:

(1) PZ̃j, Ch, j (dk
[h, j]) is the effective Grassmanian measure at scale j,

equal to, if Zj=maxk Z̃j(k),

PZ̃j, Ch, j (dk
[h, j])= D

k: Ch, j(k) > 0
D
w=±1

dk̂[h, j])+k, w dk̂[h, j]−k, w

Nj(k)

· exp 3 − 1
Lb

C
k
Ch, j(k) Z̃j(k) C

w±1
k̂[h, j]+w Dw(k) k̂[h, j]−k, w

4,
(2.13)

Nj(k)=(Lb)−1 Ch, j(k) Z̃j(k)[−k
2
0−k

2]1/2, (2.14)

Ch, j(k)−1=C
j

r=h
fr(k) q̄h, j(k), Dw(k)=−ik0+wk; (2.15)

(2) the effective potential on scale j,V (j)(k), is a sum of monomial of
Grassman variables multiplied by suitable kernels, i.e., it is of the form

V (j)(k)=C
.

n=1

1
(Lb)2n

C
k1,..., k2n
w1,..., w2n

D
2n

i=1
k̂siki , wiŴ

(j)
2n, w
¯
(k1,..., k2n−1) d 1 C

2n

i=1
siki 2 ,
(2.16)

where si=+ for i=1,..., n, si=− for i=n+1,..., 2n and w
¯
=(w1,..., w2n);
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(3) the effective source term at scale j, B (j)(`Zj k, f, J), is a sum of
monomials of grassman variables and f ±, J field, with at least one f ± or
one J field; we shall write it in the form

B (j)(`Zj k, f, J)=B (j)
f (`Zj k)+B (j)

J (`Zj k)+W(j)
R (`Zj k, f, J),

(2.17)

where B (j)
f (k) and B

(j)
J (k) denote the sums over the terms containing only

one f or J field, respectively.
Of course (2.12) is true for j=0, with

Z̃0(k)=1, E0=0, V(0)(k)=V(k), W (0)
R =0,

B (0)
f (k)=C

w

F dx[f+x, wk−x, w+k+x, wf−x, w], B (0)
J (k)=C

w

F dx Jx, wk+x, wk−x, w.
(2.18)

Let us now assume that (2.12) is satisfied for a certain j [ 0 and let us show
that it holds also with j−1 in place of j.
In order to perform the integration corresponding to k (j), we write the

effective potential and the effective source as sum of two terms, according
to the following rules.
We split the effective potential V (j) as LV (j)+RV (j), where R=

1−L and L, the localization operator, is a linear operator on functions of
the form (2.16), defined in the following way by its action on the kernels
Ŵ (j)
2n, w
¯
.

(1) If 2n=4, then

LŴ (j)
4, w
¯
(k1, k2, k3)=Ŵ

(j)
4, w
¯
(k̄++, k̄++, k̄++), (2.19)

where k̄ggŒ=(gpL−1, gŒpb−1). Note thatLŴ(j)
4, w
¯
(k1, k2, k3)=0, if ;4

i=1 wi ] 0,
by simple symmetry considerations.

(2) If 2n=2 (in this case there is a non zero contribution only if
w1=w2)

LŴ (j)
2, w
¯
(k)=

1
4

C
g, gŒ=±1

Ŵ (j)
2, w
¯
(k̄ggŒ) 31+g

L
p
+gŒ

b

p
k0 4 . (2.20)

(3) In all the other cases

LŴ (j)
2n, w
¯
(k1,..., k2n−1)=0. (2.21)
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These definitions are such that L2=L, a property which plays an
important role in the analysis of ref. 5. Moreover, by using the symmetries
of the model, it is easy to see that

LV (j)(k[h, j])=zjF
[h, j]
z +ajF

[h, j]
a +ljF

[h, j]
l , (2.22)

where zj, aj, and lj are real numbers and

F[h, j]a =C
w

w

(Lb)
C

k: Ch, j(k) > 0
kk̂[h, j]+k, w k̂[h, j]−k, w

=C
w

iw F
L

dx k[h, j]+x, w “xk
[h, j]−
x, w , (2.23)

F[h, j]z =C
w

1
(Lb)

C
k: Ceh, j(k) > 0

(−ik0) k̂[h, j]+k, w k̂[h, j]−kŒ, w

=−C
w

F
L

dx k[h, j]+x, w “0k
[h, j]−
x, w , (2.24)

F[h, j]l =
1
(Lb)4

C
k1,..., k4 : Ch, j(ki) > 0

k̂[h, j]+k1,+ k̂[h, j]−k2,+ k̂[h, j]+k3, − k̂[h, j]−k4, − d(k1−k2+k3−k4).

(2.25)

“x and “0 are defined in an obvious way, so that the second equality in
(2.23) and (2.24) is satisfied; if N=. they are simply the partial derivative
with respect to x and x0. Note thatLV (0)=V (0), hence l0=l, a0=z0=0.
Analogously we write B (j)=LB (j)+RB (j), R=1−L, according to

the following definition. First of all, we put LW (j)
R =W

(j)
R . Let us consider

now B (j)
J (`Zj k). It is easy to see that the field J is equivalent, from the

point of view of dimensional considerations, to two k fields. Hence, the
only terms which need a renormalized are those of second order in k,
which are indeed marginal. We shall use for them the definition

B (j, 2)
J (`Zj k)=C

w, w̃
F dx dy dz Bw, w̃(x, y, z) Jx, w(`Zj k+y, w̃)(`Zj k−z, w̃)

=C
w, w̃

F
dp
(2p)2

dk
(2p)2

B̂w, w̃(p, k) Ĵ(p)(`Zj k̂+p+k, w̃)(`Zj k̂−k, w̃).
(2.26)

We regularize B (j, 2)
J (`Zj k), in analogy to what we did for the effec-

tive potential, by decomposing it as the sum of LB (j, 2)
J (`Zj k) and
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RB (j, 2)
J (`Zj k), where L is defined through its action on B̂w(p, k) in the

following way:

LB̂w, w̃(p, k)=
1
4 C
g, gŒ=±1

B̂w, w̃(p̄g, k̄g, gŒ), (2.27)

where k̄g, gŒ was defined above and p̄g=(0, 2pgŒ/b). In the limit L=b=.
it reduces simply toLB̂w, w̃(p, k)=B̂w, w̃(0, 0).
This definition apparently implies that we have to introduce two new

renormalization constants. However, one can easily show that, in the limit
L, b Q., B̂w, −w(0, 0)=0, while, at finite L and b, LBw, −w behaves as an
irrelevant term, see ref. 5.
The previous considerations imply that we can write

LB (j, 2)
J (`Zj k)=C

w

Z (2)j
Zj

F dx Jx, w(`Zj k+x, w)(`Zj k−x, w), (2.28)

which defines the renormalization constant Z (2)j .
Finally we have to define L for B (j)

f (`Zj k); we want to show that,
by a suitable choice of the localization procedure, if j [ −1, it can be
written in the form

B (j)
f (`Zj k)=C

w

C
0

i=j+1
F dx dy

·5f+x, wgQ, (i)w (x−y)
“

“k+yw
V (j)(`Zj k)

+
“

“k−y, w
V (j)(`Zj k) gQ, (i)w (y−x) f−x, w6

+C
w

F
dk
(2p)2

[k̂[h, j]+k, w Q̂ (j+1)w (k) f̂−k, w+f̂+k, wQ̂
(j+1)
w (k) k̂[h, j]−k, w ],

(2.29)

where ĝQ, (i)w (k)=ĝ (i)w (k) Q̂
(i)
w (k) and Q

(j)
w (k) is defined inductively by the

relations

Q̂ (j)w (k)=Q̂
(j+1)
w (k)−zjZjDw(k) C

0

i=j+1
ĝQ, (i)w (k), Q̂ (0)w (k)=1. (2.30)

The L operation for B (j)
f is defined by decomposing V (j) in the r.h.s. of

(2.30) asLV (j)+RV (j),LV (j) being defined by (2.22).
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After writing V (j)=LV (j)+RV(j) and B (j)=LB (j)+RB (j), the
next step is to renormalize the free measure PZ̃j, Ch, j (dk

[h, j]), by adding to it
part of the r.h.s. of (2.22). We get

F PZ̃j, Ch, j (dk
[h, j]) e−V

(j)(`Zj k
[h, j])+B

(j)(`Zj k
[h, j])

=e−Lbtj F PZ̃j−1, Ch, j (dk
[h, j]) e−Ṽ

(j)(`Zj k
[h, j])+B̃

(j)(`Zj k
[h, j]), (2.31)

where

Z̃j−1(k)=Zj(k)[1+qh, j(k) zj], (2.32)

Ṽ (j)(`Zj k[h, j])=V (j)(`Zj k[h, j])−zjZj[F
[h, j]
z +F[h, j]a ], (2.33)

and the factor exp(−Lbtj) in (2.31) takes into account the different nor-
malization of the two measures. Moreover

B̃ (j)(`Zj k[h, j])=B̃ (j)
f (`Zj k[h, j])+B (j)

J (`Zj k[h, j])+W(j)
R , (2.34)

where B̃ (j)
f is obtained from B (j)

f by inserting (2.33) in the second line of
(2.29) and by absorbing the terms proportional to zj in the terms in the
third line of (2.29).
If j > h, the r.h.s of (2.31) can be written as

e−Lbtj F PZ̃j−1, Ch, j−1 (dk
[h, j−1]) F PZj−1, f̃ −1j (dk

(j))

e−Ṽ
(j)(`Zj [k

[h, j−1]+k(j)])+B̃
(j)(`Zj [k

[h, j−1]+k(j)]), (2.35)

where PZj−1, f̃ −1j (dk
(j)) is the integration with propagator

ĝ (j)w (k)=
1
Zj−1

f̃j(k)
Dw(k)

, (2.36)

with f̃j(k)=fj(k) Zj−1[Z̃j−1(k)]−1. Note that ĝ
(j)
w (k) does not depend on

the infrared cutoff for j > h and that (even for j=h) ĝ (j)(k) is of size
Z−1j−1c

−j. Moreover the propagator ĝQ, (i)w (k) is equivalent to ĝ (i)w (k), as con-
cerns the dimensional bounds.
We now rescale the field so that

Ṽ (j)(`Zj k[h, j])=V̂ (j)(`Zj−1 k[h, j]),

B̃ (j)(`Zj k[h, j])=B̂ (j)(`Zj−1 k[h, j]);
(2.37)
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it follows that

LV̂ (j)(k[h, j])=djF
[h, j]
a +ljF

[h, j]
l , (2.38)

where dj=(ZjZ
−1
j−1)(aj−zj) and lj=(ZjZ

−1
j−1)

2 lj. If we now define

e−V
(j−1)

`Zj (k
[h, j−1])+B

(j−1)(`Zj k
[h, j−1])−LbEj

=F PZj−1, f̃ −1j (dk
(j)) e−V̂

(j)(`Zj [k
[h, j−1]+k(j)])+B̂

(j)(`Zj [k
[h, j−1]+k(j)]), (2.39)

it is easy to see thatV (j−1) and B (j−1) are of the same form ofV (j) and B (j)

and that the procedure can be iterated. We call the set vFj=(lj, dj) the
running coupling constants on scale j. Note that the above procedure allows,
in particular, to write the running coupling constants vFj, 0 < j [ h, in terms
of vFjŒ, 0 \ jŒ \ j+1:

vFj=bF (h)j (vFj+1,..., vF0), vF0=(l, 0). (2.40)

The function bF (h)j (vFj+1,..., vF0) is called the Beta function. By the remark
above on the independence of scale j propagators of h for j > h, it is inde-
pendent of h, for j > h.
At the end of the iterative integration procedure, we get

W(j, J)=−LbEL, b+ C
mf+nJ \ 1

S (h)2mf, nJ(f, J), (2.41)

where EL, b is the free energy and S
(h)
2mf, nJ(f, J) are suitable functional, which

can be expanded, as well as EL, b, the effective potentials and the various
terms in the r.h.s. of (2.17) and (2.16), in terms of trees (for an updated
introduction to trees formalism see also ref. 11). This expansion, which is
indeed a finite sum for finite values of N, L, b, is explained in detail in
refs. 4 and 5, which we shall refer to often in the following.
Let us consider the family of all trees which can be constructed by

joining a point r, the root, with an ordered set of n \ 1 points, the endpoints
of the unlabeled tree, so that r is not a branching point. Two unlabeled
trees are identified if they can be superposed by a suitable continuous
deformation, so that the endpoints with the same index coincide.
n will be called the order of the unlabeled tree and the branching

points will be called the non trivial vertices. The unlabeled trees are partially
ordered from the root to the endpoints in the natural way; we shall use the
symbol < to denote the partial order.
We shall consider also the labelled trees (to be called simply trees in

the following), see Fig. 1; they are defined by associating some labels with
the unlabeled trees, as explained in the following items.
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Fig. 1. A labelled tree.

(1) We associate a label j [ 0 with the root and we denote Tj, n the
corresponding set of labelled trees with n endpoints. Moreover, we intro-
duce a family of vertical lines, labelled by an integer taking values in [j, 1],
and we represent any tree y ¥Tj, n so that, if v is an endpoint or a non
trivial vertex, it is contained in a vertical line with index hv > j, to be called
the scale of v, while the root is on the line with index j. There is the con-
straint that, if v is an endpoint, hv > j+1.
The tree will intersect in general the vertical lines in set of points dif-

ferent from the root, the endpoints and the non trivial vertices; these points
will be called trivial vertices. The set of the vertices of y will be the union of
the endpoints, the trivial vertices and the non trivial vertices. The definition
of hv is extended in an obvious way to the trivial vertices and the endpoints.
Note that, if v1 and v2 are two vertices and v1 < v2, then hv1 < hv2 .

Moreover, there is only one vertex immediately following the root, which
will be denoted v0 and can not be an endpoint; its scale is j+1.

(2) There are two kind of endpoints, normal and special.
With each normal endpoint v of scale hv we associate one of the two

local terms contributing to LV̂ (hv)(k[h, hv −1]) in the r.h.s. of (2.38) and one
space-time point xv. We shall say that the endpoint is of type d or l, with
an obvious correspondence with the two terms. Note that there is no end-
point of type d, if hv=+1.
There are two types of special endpoints, to be called of type f and J;

the first one is associated with the terms in the third line of (2.30), the
second one with the terms in the r.h.s. of (2.28). Given v ¥ y, we shall call
nfv and n

J
v the number of endpoints of type f and J following v in the tree,

while nv will denote the number of normal endpoints following v.
Analogously, given y, we shall call nfy and n

J
y the number of endpoint of

type f and J, while ny will denote the number of normal endpoints. Finally,
Tj, n, nf, nJ will denote the set of trees belonging to Tj, n with n normal
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endpoints, nf endpoints of type f and nJ endpoints of type J. Given a
vertex v, which is not an endpoint, xv will denote the family of all space-
time points associated with one of the endpoints following v.

(3) There is an important constraint on the scale indices of the end-
points. In fact, if v is an endpoint normal or of type J, hv=hvŒ+1, if vŒ is
the non trivial vertex immediately preceding v. This constraint takes into
account the fact that at least one of the k fields associated with an end-
point normal or of type J has to be contracted in a propagator of scale hvŒ,
as a consequence of our definitions.
On the contrary, if v is an endpoint of type f, we shall only impose the

condition that hv \ hvŒ+1. In this case the only k field associated with v is
contracted in a propagator of scale hv−1, instead of hvŒ.

(4) If v is not an endpoint, the cluster Lv with frequency hv is the set
of endpoints following the vertex v; if v is an endpoint, it is itself a (trivial)
cluster. The tree provides an organization of endpoints into a hierarchy of
clusters.

(5) We associate with any vertex v of the tree a set Pv, the external
fields of v. The set Pv includes both the field variables of type k which
belong to one of the endpoints following v and are not yet contracted at
scale hv (in the iterative integration procedure), to be called normal external
fields, and those which belong to an endpoint normal or of type J and are
contracted with a field variable belonging to an endpoint ṽ of type f

through a propagator gQ, (hṽ −1), to be called special external fields of v.

These subsets must satisfy various constraints. First of all, if v is not
an endpoint and v1,..., vsv are the sv vertices immediately following it, then
Pv …1i Pvi . We shall denote Qvi the intersection of Pv and Pvi ; this defini-
tion implies that Pv=1i Qvi . The subsets Pvi 0Qvi , whose union will be
made, by definition, of the internal fields of v, have to be non empty, if
sv > 1, that is if v is a non trivial vertex.
Moreover, if the set Pv0 contains only special external fields, that is if

|Pv0 |=n
f, and ṽ0 is the vertex immediately following v0, then |Pv0 | < |Pṽ0 |.

We can write

S (h)2mf, nJ(f, J)=C
.

n=0
C
−1

j0=h−1
C

y ¥Tj0, n, 2m
f, nJ

|Pv0 |=2m
f

C
w
¯

F dx
¯

×D
2mf

i=1
fsixi, wi D

nJ

r=1
Jx2mf+r, w2mf+rS2mf, nJ, y, w

¯
(x
¯
), (2.42)
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where w
¯
=w

¯
={w1,..., w2mf+nJ}, x

¯
={x1,..., x2mf+nJ} and si=+ if i is odd,

si=− if i is even. Moreover, the kernels S2mf, nJ, y, w
¯
(x
¯
) are suitable func-

tions, whose explicit expression can be found in ref. 5 in the case mf=0
and can be easily extended to the general case; the case mf=1, nJ=0 is
considered in detail in ref. 4. We shall not report it here, but we only
remark that the kernels satisfy the following dimensional bound:

F dx
¯
|S2mf, nJ, y, w

¯
(x
¯
)| [ Lb(Cē)n c−j0(−2+m

f+nJ) D
2mf

i=1

c−hi

(Zhi )
1/2

·D
nJ

r=1

Z (2)h̄r
Zh̄r

D
v not e.p

1 Zhv
Zhv −1
2 |Pv|/2 c−dv, (2.43)

where ē=max0 \ k \ j |vFk |, hi is the scale of the propagator linking the ith
endpoint of type f to the tree, h̄r is the scale of the rth endpoint of type J
and

dv=−2+|Pv |/2+n
J
v+z̃(Pv), (2.44)

with

z̃(Pv)=˛
z(Pv) if nfv [ 1, n

J
v=0,

1 if nfv=0, n
J
v=1, |Pv |=2,

0 otherwise
(2.45)

and z(Pv)=1 if |Pv |=4, z(Pv)=2 if |Pv |=2 and zero otherwise.
From the above bound we can easily get the asymptotic behaviour of

the Schwinger functions we are interested in. In fact the Schwinger func-
tions are simply related to the kernels of the functionals S (h)2mf, nJ(f, J) and
(2.43) allows to get an expansion for them. For example, G2w(x1, x2) is
equal to the sum over the terms in the r.h.s. of (2.43) with mf=1, nJ=0
and w

¯
=(w, w), while G2, 1w (x; y, z) is obtained by selecting the terms with

mf=1, nJ=1 and w
¯
=(w, w, w). Hence, the bound (2.43) is sufficient to

get a bound for the Schwinger functions Fourier transforms, if ē is small
enough, because, by translation invariance, the Fourier transform of
S2mf, nJ, y, w

¯
(x
¯
) is bounded by (Lb)−1 > dx

¯
|S2mf, nJ, y, w

¯
(x
¯
)|. We only have to

sum over y the r.h.s. of (2.43) (without the Lb factor), by using the tech-
niques described in detail in ref. 5. The main point is to control the sums
over the sets Pv and the scale indices hv, for fixed values of the external
propagators scale indices hi, which are determined up to one unit by the
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external momenta. Hence, if all the ‘‘vertex dimensions’’ dv were greater
than 0, one would get a dimensional bound of the type

(Cē) n̄ C
h̄

j0=h
c−j0(−2+m

f+nJ) D
2mf

i=1

c−hi

(Zhi )
1/2 D

nJ

r=1

Z (2)h̄r
Zh̄r
, (2.46)

where n̄ is the minimal order in l of the graphs contributing to the
Schwinger function and h̄ is an upper bound on the scale of the tree lower
vertex v0, which depends on the external momenta.
However, it is not true that, given y, dv > 0 for all non trivial v ¥ y; in

fact dv=0, if |Pv |=2 and n
f
v=n

J
v=1 or n

f
v=2, n

J
v=0. This implies that

the sum over the scale indices of some special paths on the tree can produce
a result different from the ‘‘trivial one,’’ leading to (2.46). Hence, in order
to get the right bound, one has to analyse case by case the constraints on
the endpoint scale indices, related to the support properties of the single
scale propagators and the fact that the f and J momenta are fixed.

3. VANISHING OF LUTTINGER BETA FUNCTION

3.1. Vanishing of Beta Function and Smallness of Running Coupling

Constants

In the previous section we have defined, for each fixed h < 0, an
expansion of the Schwinger functions for the model with infrared cutoff ch,
in terms of the running coupling constants {vFj}h [ j [ 0; if ē=maxh [ j [ 0 |vFj | is
small enough, such expansion is convergent. Moreover, it is easy to see that
all results are true even if we add to the interaction (2.3) a term d0F

[h, 0]
a

(see (2.23)), with d0 of order l. In fact, we never used the fact that
a0=d0=0 in an essential way and the introduction of this term has the
physical meaning of a small change in the free Fermi velocity (which we
put equal to 1, for simplicity).
The fact that ē=maxh [ j [ 0 |vFj | can be chosen small with l is a conse-

quence of the following remarkable property, to be proved in Section 3.3.

Theorem 3.1. There are ē0 > 0 and gŒ < 1, such that, for any j < 0,
if |vF| [ ē0:

|bj, l(vF,..., vF)| [ C |vF|2 cgŒj, |bj, d(vF,..., vF)| [ C |vF|2 cgŒj, 0 < gŒ < 1, (3.1)

where bF j=(bj, l, bj, d) is defined as in (2.41), with h=−..
The above property is usually called ‘‘vanishing of the Beta function,’’

and it is an highly non trivial statement. In fact each order of the expansion
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for bj(vF,..., vF) is given by a sum of Feynman graphs having a non-vanishing
limit as jQ −.. What (3.1) says is that there are cancellations among
Feynman graphs so that the sum is O(cgŒj). Of course it is easy to check this
cancellation at the second order by an explicit computation; at the third
order, to see the cancellation is already quite cumbersome and we think
that it is essentially impossible to check it at every order in the expansion.
Hence we prove (3.1) by using the exact solution of the Luttinger model,
following the strategy first proposed in ref. 2. As we said in the introduc-
tion, the interest of (3.1) is that it can be used in the analysis of many dif-
ferent models, like spin chain or coupled Ising models, for which an exact
solution is not available, at least for the correlation functions.
An immediate consequence of (3.1) is the following lemma, see also

ref. 5.

Lemma 3.1. If (3.1) holds and l is small enough, then, for any
infrared cutoff scale h and any j > h, ēj —maxj [ i [ 0 |vFi | [ C |l|.

Proof. Note first that, by the compact support properties of the
propagator, bF j=bF (h)j , for any h < j. Hence, for any fixed j, by taking the
infrared cutoff scale h smaller than j−1, we can write

vFj−1=vFj+bF j(vFj,..., vFj)+ C
0

k=j+1
DF j, k, (3.2)

where

DF j, k=bF j(vFj,..., vFj, vFk, vFk+1,..., vF0)−bFh(vFj,..., vFj, vFj, vFk+1,..., vF0). (3.3)

On the other hand, it is easy to see that DF j, k admits a tree expansion similar
to that of bF j(vFj,..., vF1), with the property that all trees giving a non zero
contribution must have an endpoint of scale k+1, associated with a differ-
ence lk−lj or dk−dj. Moreover, it is easy to see that our expansion has the
property that the trees with root of scale j, containing an endpoint of scale
i, are damped by a factor c−g(i−j), for some positive constant g; hence

|DF j, k | [ Cējc
−g(k−j) |vFk−vFj |. (3.4)

We want now to show that there exists a constant c0, such that,
uniformly in j,

|vFk−1−vFk | [ c0 |l|3/2 chk, j < k [ 1. (3.5)
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with h=min{g/2, gŒ}. In fact (3.5) is certainly verified for k=1 and, by
using (3.1), (3.2), and (3.5),

|vFj−1−vFj | [ Cē2j c
gŒj+Cc0 ē

5/2
j C

1

k=j+1
c−g(k−j) C

k

i=j+1
chi (3.6)

which immediately implies (3.5) with jQ j−1, together with the condition
ēj [ c1 |l|, for some constant c1, independent of j. L

3.2. Comparison with the Luttinger Model Beta Function

Let us consider the Luttinger model with hamiltonian

H=H0+V, H0= C
w=±1

iw(1+d) F
L

0
dx : k+w, x “xk

−
w, x :,

V=l F
L

0
dx F

L

0
dy v(x−y) : k++1, xk

−
+1, x : : k

+
−1, yk

−
−1, y :,

(3.7)

where : : denotes the Wick ordering and v(x) is a smooth function of fast
decay. Note that we have eliminated the dependence on the Fermi momen-
tum pF by a trivial redefinition of the fermionic fields and we have put the
Fermi velocity equal to 1+d. Since the Fermi velocity has to be positive,
we shall suppose that |d| [ 1/2.
The crucial property of such model is that it is exactly soluble (as it

was shown by Mattis and Lieb (20)) and its Schwinger functions can be
computed, (3) in the limit b=.. In particular this is true for the two and
four point Schwinger functions; from Eq. (2.4) of ref. 3 (slightly modified
in order to take into account that the Fermi velocity is 1+d instead of 1) it
follows that, for any finite L and b=.,

G4, L+ (x1, x2, x3, x4)=G
2, L
+ (x1−x2) G

2, L
− (x3−x4)[eA(x1, x2, x3, x4)−1], (3.8)

where G4, Lw and G2, Lw are defined analogously to (2.11) and (2.10), respec-
tively, and

A(x1, x2, x3, x4)=F(x1−x4)+F(x2−x3)−F(x1−x3)−F(x2−x4),

F(x)=
2p
L

C
p > 0

s(p) c(p)
p

(1−e−p |x0| (1+d) m(p) cos px),
(3.9)
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with s(p)=sinh f(p), c(p)=cosh f(p), m(p)=e−2f(p), tanh 2f(p)=
−lv̂(p)[lv̂(p)+4p(1+d)]−1 andp=2mp/L,m integer.Note that (1+d) m(p)
\ a, for some constant a > 0.
We consider now G4, L+ for values x̄i, such that |x̄i− x̄j | [ L/2 for all

couples (i, j); a convenient choice is

x̄1=(r, r), x̄2=(−r, r), x̄3=(−r, −r), x̄4=(r, −r), (3.10)

where 0 [ r [ L/4. One can immediately check that

A(x̄1, x̄2, x̄3, x̄4)

=
4p
L

C
p > 0

s(p) c(p)
p

[e−2`2 pr(1+d) m(p) cos(2`2 pr)−e−2pr(1+d) m(p)]. (3.11)

It is then very easy to show that

: G4, L+ (x̄1, x̄2, x̄3, x̄4)
G2, L+ (x̄1− x̄2) G

2, L
− (x̄3− x̄4)

: [ c1 |l| (3.12)

for some constant c1, independent of L and d.
On the other hand we can compute the Schwinger functions of the

Luttinger model also by a Renormalization Group expansion, by taking
L° b (and at the end the limit b Q. is taken). We start from a generat-
ing functional like (2.8), with

V(k)=l F dx v(x−y) d(x0−y0) : k
+
x,+k−x,+ : : k

+
y, −k−y, − :+

+C
w

iwd F dx : k+x, w “xk
−
x, w : (3.13)

and

P(dk)=N−1Dk exp 3 − 1
Lb

C
w=±1

C
k
(−ik0+wk) k̂+k, wk̂−k, w 4 . (3.14)

We can write

P(dk)=PL(dk i.r) Pl(dku.v.), (3.15)

where PL(dk i.r) is given by (2.4) with h=hL, hL being the smallest h such
that pL−1 is in the support of fh, while Pl(dku.v.) has the same expression,
with 1−ChL, 0(k) in place of ChL, 0(k). The ultraviolet problem of the
Luttinger model was discussed in ref. 9, with a different choice of the cutoff

162 Benfatto and Mastropietro



function, but their results hold also with the present choice. The analysis of
ref. 9 implies that, if (k, f);w > dx[f+x, wk−x, w+k+x, wf−x, w],

F Pl(dku.v.) eV(k)+(k, f)=eE0+V
(0)(ki.r)+B

0(ki.r, f), (3.16)

where E0 is an analytic function of l and d, V (0)(k i.r) can be written as
in (2.16), with kernels analytic in l and d, and B0(k, f) has an expression
like (2.17) (with J=0) and has similar analyticity properties. Moreover, all
the kernels have fast decaying properties on scale 0 (space-time distances of
order 1).
Let us now observe that we can write V (0)(k i.r)+B0(k i.r, f) as the

sum of a local part plus a remainder, which contains all possible ‘‘irrele-
vant’’ terms. Since the local part has the same structure as the local part of
the model studied in Section 2, with only different values of the running
coupling constants on scale 0, and the irrelevant terms are of the same type
of those produced in Section 2 by the first infrared integration, it is clear
that we can repeat the analysis done for the model (2.8) also for the Lut-
tinger model (note that the analysis was done with L, b finite; this will play
a crucial role in the following). Moreover, the arguments used in the proof
of Lemma 4.5 of ref. 5 allow us to prove, without any further subtle
problem, that adding irrelevant terms to the effective interaction on scale 0
has an exponentially small effect on scale j, for jQ −.. Hence, if we call
vFLj=(l

L
j , d

L
j ), 0 \ j \ hL, the running coupling constants in the Luttinger

model at volume L, with vFL0=(l, d), and bF lj(vF
L
j ,..., vF

L
0 ) the Luttinger model

Beta function, the following Lemma can be proved.

Lemma 3.2. There are e0 > 0 and gŒ < 1 (independent of L), such
that, given j [ 0, bF lj(vF

L
j ,..., vF

L
0 ) is an analytic function of his arguments

in the region ēL=max0 \ j \ hL |vF
L
j | [ e0, for some small e0. Moreover, if

ēj=max0 \ i \ j |vF
L
i |

|bF j(vF
L
j ,..., vF

L
0 )−bF lj(vF

L
j ,..., vF

L
0 )| [ Cē2j c

gj. (3.17)

3.3. Proof of Theorem 3.1

Lemma 3.2 implies that, if we prove (3.1) for the Luttinger model Beta
function, the same property holds for the model (2.8). In order to prove the
vanishing of the Beta function in the Luttinger model, we will use the
following bound, obtained through our Renormalization Group expansion.
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Lemma 3.3. Suppose that x̄1, x̄2, x̄3, x̄4 are chosen as in (3.10), with
r such that c−hr=r [ L/4 and hr−hL=m̄, and that ēL [ e0. Then, if
l̄L —max1 \ j \ hL |l

L
j |, there exists a constant am̄ > 0, independent of L, such

that

: G4, L+ (x̄1, x̄2, x̄3, x̄4)
G2, L+ (x̄1− x̄2) G

2, L
− (x̄3− x̄4)

−lLhraL, m̄ : [ c0 l̄L ēL, (3.18)

for some constants c0 and aL, m̄, with |aL, m̄ | \ am̄.

Proof. To start with, we want to prove that, if hr=hL+m̄,

:G4, L+ (x̄1, x̄2, x̄3, x̄4)−lLhrcL, m̄
c2hr

Z2hr
: [ c̄0 l̄L ēL

c2hr

Z2hr
, (3.19)

where cL, m̄ is a suitable constant, bounded away from 0, uniformly in L, for
any fixed m̄. We shall use the expansion described in Section 2, for which
the bound (2.43) was found. We have to modify such bound by taking into
account the fact that there is no integrations over the coordinates and that
all differences of the coordinates are of order c−hr.
By using (2.42), we can write

G4, L+ (x̄1, x̄2, x̄3, x̄4)=C
.

n=1
C
−1

j0=hL −1
C

y ¥Tj0, n, 4, 0

|Pv0 |=4

G4, y(x̄1, x̄2, x̄3, x̄4)

+G4, L, (uv)+ (x̄1, x̄2, x̄3, x̄4), (3.20)

where G4, y — S4, 0, y, {+,+, −, −} and G
4, L, (uv)
+ is the contribution of the ultra-

violet scales (it is the kernel of a term of forth order in f contributing to
B0(0, f), see (3.16), which gives a negligible contribution for rQ.. We
shall divide the trees contributing to the first term in the r.h.s. of (3.20) in
two families, defined in terms of some properties of the four special end-
points of type f associated with the four points x̄i.
Let us consider first the family T (1)

n of trees with n endpoints sharing
the following properties.

(1) If vi, i=1,..., 4, are the four special endpoints, there are a per-
mutation (a, b, c, d) of (1, 2, 3, 4) and two vertices vab and vcd, such that
vab < va, vb and vcd < vc, vd;

(2) if v < va, vb (v < vc, vd) then v [ vab (v [ vcd);

(3) if vab ] vcd, then the subtrees with root in the vertices (possibly
coinciding) immediately preceding vab and vcd are disjoint.
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These conditions essentially imply that vab is the higher vertex such
that xvab contains both xa and xb, but does not contain xc and xd; a similar
condition is valid for vcd. Moreover, there is a vertex v̄, which is the higher
one preceding both vab and vcd; note that, if vab=vcd, then v̄=vab=vcd.
By using the notation of ref. 5, Section 5, we call T̃vab=1v \ vab T̃v the

subtree of the tree graph connecting the points in xvab ; recall that xv is the
set of all vertices associated with the endpoints following v and that there is
a propagator of scale hv associated with any line l ¥ T̃v. Proceeding as in
ref. 5, Section 5.9, we can extract from the propagators in T̃vab a factor
smaller than nCN(1+chvab |xa−xb |)−N, if n is the number of endpoints, since
there is in T̃vab a path connecting x̄a with x̄b.
Note that here we are using the condition r [ L/4, in order to be able

to substitute the distance on the torus (recall that we work with antiperio-
dic boundary conditions) with the Euclidean distance.
In a similar way, we can extract from the propagators in T̃vcd a factor

smaller nCN(1+chvcd |xc−xd |)−N. An analogous argument can be applied to
the the vertex v̄, by choosing any couple of special endpoints (all distances
between the x̄i are of the same order c−hr); for example, we can extract a
factor nCN(1+chv̄ |xa−xc |)−N. If we take N=1, the product of these three
factors is bounded by Cc−(hvab −hr)c−(hvcd −hr)c−(hv̄ −hr).
The bound of G4, y(x̄1, x̄2, x̄3, x̄4) will differ from the r.h.s. of (2.43),

because of this factor and because we have to do three integration less
(there are four fixed points, instead of one). Since the integrations leading
to (2.43) are done by using the decaying properties of the propagators
associated with the lines of T̃v0 , it is easy to see that we can choose the
‘‘missing integrations,’’ so that we gain a factor c2hvab+2hvcd+2hv̄. It follows
that, if y ¥T (1)

n ,

|G4, y(x̄1, x̄2, x̄3, x̄4)| [ Cc3m̄l̄L(CēL)n−1 D
4

i=1

c−hi

(Zhi )
1/2 D

v not e.p
c−dv

· c2hvab+2hvcd+2hv̄c−(hvab −hL)c−(hvcd −hL)c−(hv̄ −hL), (3.21)

where we used also the fact that Zj/Zj−1 < 1 (see ref. 5) and that there is at
least an endpoint of type l.
Note that, by (2.44), dv can be equal to 0 for all vertices belonging to

the paths Cab and Ccd, which connect v̄ with vab and vcd, respectively, while
dv > 0 in all other vertices. However,

c−(hvab −hL)c−(hvcd −hL) D
v not e.p

c−dv=c−2(hv̄ −hL) D
v not e.p

c−d̃v, (3.22)
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with d̃v > 0 for all v ¥ y. Moreover, if v −i is the vertex immediately preceding
vi (see item 3) after Fig. 1, we have

C
hi \ hviŒ
i=1,..., 4

c2hvab+2hvcd D
4

i=1

c−hi

(Zhi )
1/2 [

C
Z2hv̄

D
4

i=1

1Zhv̄
ZhviŒ
21/2. (3.23)

By using that Zi/Zj [ ccē
2
L(j− i), if j > i (see refs. 5), it follows that

C
y ¥T

(1)
n

|G4, y(x̄1, x̄2, x̄3, x̄4)|

[ C
0

h̄=hL

C
y ¥T

(1)
n : hv̄=h̄

|G4, y(x̄1, x̄2, x̄3, x̄4)|

[ Cl̄L(CēL)n−1 C
0

h̄=hL

c2h̄c−3(h̄−hL)

Z2hv̄
[ Cl̄L(CēL)n−1

c2hr

Z2hr
. (3.24)

A similar bound can be found for the second family T (2)
n =Tn 0T

(1)
n

of trees contributing to the first term in the r.h.s. of (3.20). If y ¥T (2)
n , there

is a vertex vab, which is the first vertex v ¥ y such that the two points xa and
xb belong to xvab , and there is a vertex vabc, which is the first vertex v ¥ y

such that xvabc contains xa, xb, and xc. One proceeds as in the previous case,
by extracting from the propagators in T̃vab and in T̃vabc a term chr −hvabcchr −hvab ,
which is sufficient to get again the bound (3.24); we omit the details. Hence
we get the bound (3.19), by extracting the terms of the first order in l̄L; an
explicit calculation shows the constant cL, m̄ is bounded away from zero,
uniformly in L.
Let us now analyze the function G2, Lw (x−y), appearing in the l.h.s. of

(3.18). By using (2.43) we find

G2, Lw (x−y)= C
0

h=hL

1
Zh
g̃ (h)w (x−y)+SLw(x−y)+G2, L, (uv)w (x−y), (3.25)

where ĝ̃ (h)w (k)=ĝ
(h)
w (k)[Q̂

(h)
w (k)]

2, see (2.31), G2, L, (uv)w (x−y) is the contribu-
tion of the ultraviolet scales, which gives a negligible contribution for
|x−y|Q., and

SLw(x−y)=C
.

n=1
C
−1

j0=hL −1
C

y ¥Tj0, n, 2, 0

|Pv0 |=2

Sy, w(x−y) (3.26)

where Sy, w(x−y) — S2, 0, y, (w, w)(x, y).
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We shall proceed as in the proof of (3.19). Let Tn the set of trees with
n endpoints contributing to the r.h.s. of (3.26). Given y ¥Tn, there is a
vertex v̄, which is the higher one, such that x and y both belong to xv̄, and
we can extract from the propagators in T̃v̄ a factor nCN(1+chv̄ |x−y|)−N.
Hence, we can bound |Sy, w | with an expression which differs from the r.h.s.
of (2.43) because of this factor and because we have to do an integration
less, which gives a factor c2hv̄. It follows that, if r=x−y=(0, 2r), with
r=c−hr, and we choose N=2,

|Sy, w(x−y)| [ Cc j0c m̄(CēL)n c2hv̄c−2(hv̄ −hL) D
2

i=1

c−hi

(Zhi )
1/2 D

v not e.p
c−dv. (3.27)

Note that, by (2.44), dv can be equal to 0 for all vertices belonging to
the path C connecting v̄ with the root. However,

c−(hv̄ −j0) D
v not e.p

c−dv= D
v not e.p

c−d̃v, (3.28)

with d̃v > 0 for all v ¥ y. Hence, if we use the analogous of bound (3.23) for
summing over the scales of the two endpoints of type f associated with the
points x and y, we get the bound

C
y ¥Tn

|Sy, w(x−y)| [ C
0

h̄=hL

C
y ¥Tn : hv̄=h̄

|Sy, w(x−y)|

[ (CēL)n C
0

h̄=hL

c h̄c−2(h̄−hL)

Zhv̄
[ (CēL)n

chr

Zhr
. (3.29)

This bound, (3.25) and an explicit calculation of the first term in the
r.h.s of (3.25) imply that, if hr=hL+m̄,

:G2, Lw (wr)−w
chr

Zhr
bL, m̄ : [ CēL

chr

Zhr
(3.30)

where bL, m̄ is a suitable constant, bounded away from 0, uniformly in L, for
any fixed m̄.
The bound (3.18) is a simple consequence of the bounds (3.19) and

(3.30). L

We want now to show, by using Lemma 3.3, that the running coupling
constants of the infinite volume Luttinger model are well defined and of
order l, up to h=−.. Let us define vFj=vF

.

j , ēj=maxj [ i [ 0 |vFi |, l̄j=
maxj [ i [ 0 |li |, d̄j=maxj [ i [ 0 |di |. We shall prove the following Lemma.
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Lemma 3.4. There are constants e1, c2, and c3 such that

|vF1 | [ e1 S l̄j [ c2e1, d̄j [ c3e1, -j [ 0. (3.31)

Proof. In order to prove (3.31), we shall proceed by contradiction.
To begin with, we suppose that there exists a j [ 0 such that

l̄j+1 [ c2e1 < |lj | [ 2c2e1 [ e0, |d̄j | [ c3e1 [ e0, (3.32)

e0 being defined as in Lemma 3.2, and we prove that this is not possible, if
e1, c2 and c3 are suitably chosen.
Let us consider the Luttinger model at finite volume L, such that

hL=j−m̄ and m̄ is a fixed integer, independent of L, such that c−j [ L/4.
The arguments used in the proof of Lemma 4.5 of ref. 5 and a rough bound
on the difference between the infinite and finite volume propagators allow
us to prove that there is ẽ [ e0 such that, if ẽL —maxhL [ i [ 0 max{|vFi |, |vF

L
i |} [ ẽ,

then

|vFLi −vFi | [ Cl̃i+1 ẽ
1/2
i+1

c−i

L
, hL [ i [ 0, (3.33)

where l̃s —maxs [ i [ 0 max{|li |, |l
L
i |}, ẽs —maxs [ i [ 0 max{|vFi |, |vF

L
i |}. We omit

the details, which can be found in ref. 7, and are indeed very simple, once
Lemma 4.5 of ref. 5 is understood.
Then, since |vFLi−1−vF

L
i | and |vFi−1−vFi | are of order ẽ2i and m̄ is a fixed

number, it is very easy to prove, by an iterative argument, that the vFLi for
hL [ i [ 0 and the vFi for hL [ i < j are well defined, if the conditions (3.32)
are satisfied, with any fixed values of c2 and c3 and e1 small enough;
moreover

|lLi −li | [
c2
2

e1, |vFLi | [ (3c2+2c3) e1, hL [ i [ 0. (3.34)

On the other hand, by using (3.18), with r=c−j=c−hL+m̄, and (3.12), we get

|lLj | [ am̄
−1 [c0( max

hL [ i [ 0
|lLi |)( max

hL [ i [ 0
|vFLi |)+c1 |l|], (3.35)

which implies, together with (3.34), that

|lj | [
c2
2

e1+a
−1
m̄ [c0(3c2+2c3)

2 e21+c1e1] [ c2e1, (3.36)

in contradictionwith (3.32), if, for example, c2=4c1/am̄ and c0(3c2+2c3)2 e1/
c1 [ 1.
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Note that the previous argument is valid also if we substitute in (3.32)
the condition d̄j [ c3e1 with d̄j+1 [ c3e1 < d̄j [ 2c3e1. It follows that, in order
to complete the proof of (3.31), we only have to prove that there is a
contradiction in the hypothesis

l̄h [ c2e1 [ e0, d̄h+1 [ c3e1 < d̄h [ 2c3e1 [ e0. (3.37)

This result will be achieved by comparing the vFi of the Luttinger model, for
h [ i [ 0, with the running coupling constants vF (h)i the model with free
measure (2.4) and interaction

l0 F dx k[h, 0]+x,+ k[h, 0]−x,+ k[h, 0]+x, − k[h, 0]−x, − +d0 C
w=±1

iw F dx k[h, 0]+w, x “xk
[h, 0]−
w, x .
(3.38)

In fact, the analysis of ref. 9 implies that |vF0 | [ 2 |vF1 | [ 2e1, if e1 is small
enough, while the fact that the beta functions of the two models differ only
because of the irrelevant terms on scale 0 implies that vF (h)i is well defined for
h [ i [ 0, if the conditions (3.37) are verified with e1 small enough, and
|vFi−vF

(h)
i | [ Cl̄h ē

1/2
h . Hence, it is easy to see that, to find a contradiction with

(3.37), it is sufficient to prove that there is a constant c3, such that

l̄ (h)h [ 2c2e1 [ e0, d̄ (h)h [ e0 S d̄ (h)h [ c3e1/2. (3.39)

In order to prove (3.39), we shall use the approximate gauge
invariance of the model (3.38)–(2.4). In fact, by proceeding as in the proof
of eq. (7.27) of ref. 5, which we refer to for definitions, it is possible to
derive the following Ward identity, up to terms of the second order in the
momenta:

0=−wd0 p− Ŝh, w(k−p)+Ŝh, w(k)

+[−ip0+w(1+d0) p] Ĉh, w, w(p, k)+D̂h, w(p, k). (3.40)

Note that in ref. 5, the term proportional to d0 in (3.38) was included in the
free measure, hence d0 does not appear in the Ward identity, as well as the
term of the second order in the momenta, which we did not write explicitly
in (3.40), since we shall use it only at zero momenta. In any case, the
arguments sketched in ref. 5 and fully developed in ref. 6 allow to prove
that

: D̂h, w(p, k)
(−ip0+wp)

: [ c4 l̄hZ (h)h . (3.41)
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Let us define

Z̃d̃h=w
“Ŝh, w

“p
(0, 0)− i

“Ŝh, w

“p0
(0, 0), Z̃h=1+i

“Ŝh, w

“p0
(0, 0). (3.42)

The analysis of ref. 5 implies that

: Z̃h
Z (h)h
−1 : [ c5 l̄h, |d̃h−d (h)h | [ c5 l̄

2
h . (3.43)

On the other hand, if we put in (3.40) p0=0 and take the limit pQ 0, we
get

0=−wd0+
“Ŝh, w

“p
(k)+w(1+d0) Ĉh, w, w(0, k)+lim

pQ 0

D̂h, w((p, 0), k)
p

, (3.44)

while, if we put in (3.40) p=0 and take the limit p0 Q 0, we find

0=i−1
“Ŝh, w

“p0
(k)− Ĉh, w, w(0, k)+ lim

p0 Q 0

D̂h, w((0, p0), k)
ip0

. (3.45)

It follows that

Z̃h(d̃h−d0)=−w lim
pQ 0

D̂h, w((p, 0), 0)
p

+i(1+d0) lim
p0 Q 0

D̂h, w((0, p0),)
ip0

, (3.46)

implying, together with (3.41) and (3.43), that there exists a constant c3,
such that

|d (h)h | [
c3
2

e1. L (3.47)

Lemma 3.4 implies the vanishing of the Luttinger model Beta function
in the form

|bF lj, l(vF
L,..., vFL)| [ C |vFL|2 chj, |b lj, d(vF

L,..., vFL)| [ C |vFL|2 chj, 0 < h < 1,
(3.48)

which is what we need to complete the proof of Theorem (3.1). The proof
is again by contradiction; assume that, for some r \ 2

b lj(vF
L,..., vFL)=bj(vF

L
j )
r+O((vFLj )

r+1), (3.49)
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with bj a non vanishing constant. By Lemma 3.4 and Lemma 3.2 the
running coupling constants vFLj are analytic functions of vF1

vFLj=vF1+C
r

n=2
c (j)n (vF

L
j )
n+O((vFLj )

r+1) (3.50)

and for any fixed j the sequence cnj is a bounded sequence. Inserting (3.50)
in the analogous of (3.2) we find

C
r

n=2
c (j−1)n (vFLj )

n=C
r

n=2
c (j)n (vF

L
j )
n+ C

0

k=j+1
C
r

n=3
dnj, k(vF

L
j )
n (3.51)

where ; r
n=3 d

n
j, k(vF

L
j )
n represents the Taylor expansion of Dj, k up to order r,

and from (3.4)

|dnj, k | [ c−g(k−j)Cn sup
2 [ m [ n−1

|c (j)m −c
(k)
m |. (3.52)

Hence, inserting (3.52) in (3.51) we find

|c (j−1)n −c (j)n | [ C
n C

0

k=j+1
c−g(k−j) sup

2 [ m [ n−1
|c (j)m −c

(k)
m | (3.53)

which, if limjQ −. c
(j)
n =cn, easily implies (by induction) that |c

(j−1)
n −cn | [

Cncg/2j, for 2 [ n [ r−1. This means that |dnj, k | [ cg/4jC̄n so that
c (j−1)n =c(j)n +br+O(c

g/4j) is necessarily a diverging sequence, and this is a
contradiction.

4. WARD IDENTITIES AND DYSON EQUATION

4.1. Ward Identities

In the previous section we have proved the vanishing of the Beta
function by using the exact solution of the Luttinger model. A very natural
question is if it is possible to derive the same results directly in the frame-
work of functional integration. As we said in the introduction, (3.1) is
believed in the physical literature to follow from a set of Ward identities
and Dyson equations. We derive rigorously such equations, but a consis-
tent treatment of the cutoffs produces corrections to them which must be
taken into account.
For technical reasons, which are explained in detail in ref. 6, one has

to slightly modify the model described in Section 2.1 by substituting the
function [Ch, 0(k)]−1 by a function [C

e
h, 0(k)]

−1, depending on a small
parameter e, which is equivalent as far the scaling properties of the theory
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are concerned, but is different from 0 for all allowed values of k. This
parameter has no essential role, since all bounds are uniform in it and one
can take, at the end, the limit e Q 0. Moreover, in this section we will only
summarize our results, hence we will ignore this problem in the following.
By performing in (2.8) the gauge transformation ksx, w̄ Q e

isax, w̄ksx, w̄ and
ksx, −w̄ Q ksx, −w̄ on the field with w=w̄ (only), deriving with respect to ax, w̄

and by putting ax, w̄=0, we get

0=
1

Z(f, J)
F P(dk)[−Dw̄(k+x, w̄k−x, w̄)+dTx, w̄−f+x, w̄k−x, w̄+k+x, w̄f−x, w̄]

· exp 3 −V(k)+C
w

F dx[Jx, wk+x, wk−x, w+f+x, wk−x, w+k+x, wf−x, w]4 , (4.1)

where Z(f, J)=exp{−W(f, J)},

Dw(k
+
x, wk−x, w)=

1
(Lb)2

C
p, k
Dw(p) e−ipxk̂+k, wk̂−k+p, w, (4.2)

Dw(p)=−ip0+wp and

dTx, w=
1
(Lb)2

C
k+ ] k −

e i(k
+−k −) xCe(k+, k−) k̂+k+, wk̂−k −, w. (4.3)

Ce(k+, k−)=[C
e
h, 0(k

−)−1] Dw(k−)−[C
e
h, 0(k

+)−1] Dw(k+). (4.4)

In (4.2) (and always in the following) p=(p, p0) is summed over momenta
of the form (2pn/L, 2pm/b), with n, m integers.
By deriving the r.h.s. of (4.1) with respect to f+y, w̄ and f−z, w̄ and then

putting the external fields equal to 0, we obtain, in Fourier space, if p ] 0,

Ĝ2, 1w (p, k)=
Ĝ2w(k−p)−Ĝ2w(k)

Dw(p)
+Ĥ2, 1w (p, k), (4.5)

where Ĥ2, 1w (p, k) is the Fourier transform of

H2, 1w (x; y, z)=
“

“Jx, w

“
2

“f+y, w “f
−
z, w

WD(f, J)|f=J=0, (4.6)

with

WD(f, J)=log F P(dk) e−V(k)+;w > dx[Jx, wTx, w+f
+
x, wk

−
x, w+k

+
x, wf

−
x, w], (4.7)

Tx, w=
1
(Lb)2

C
k+ ] k −

e i(k
+−k −) x Ce(k

+, k−)
Dw(k+−k−)

k̂+k+, wk̂−k −, w. (4.8)
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Analogously by performing fourth derivatives with respect to the f

fields

Ĝ4, 1w (p, k1, k2, k3)=Dw(p)
−1 [Ĝ4w(k1−p, k2, k3)−Ĝ

4
w(k1, k2+p, k3)]

+Ĥ4, 1w (p, k1, k2, k3), (4.9)

where H4, 1+ (p; k1, k2, k3) is the Fourier transform of

H4, 1w (x; x1, x2, x3, x4)=
“

“Jx, w

“
2

“f+x1, w “f
−
x2, w

“
2

“f+x3, −w “f
−
x4, −w

WD(f, J)|f=J=0.
(4.10)

The Ward identities (4.5) and (4.9) without the terms Ĥ2, 1 and Ĥ4.1

(which we can prove are non vanishing) are usually derived in the physical
literature by various formal arguments, see for example refs. 8, 19, and 23.
Indeed, if one removes the infrared cutoff (by putting h=−.) and neglects
the correction terms Ĥ2, 1 and Ĥ4, 1, the identities (4.5), (4.9), (4.15), and
(4.16) are the analogue, respectively, of Eqs. (3.9), (3.39), Figs. 8 and 9 of
ref. 19, from which the vanishing of the density-density critical index and
of the Beta function is claimed to follow.

4.2. Dyson Equation

It is possible to derive a Dyson equation which, combined with the
second Ward identity, gives a relation between G4, G2, and G2, 1.
By (2.11), if Z=> P(dk) exp{−V(k)} and O ·P denotes the expecta-

tion with respect to Z−1 > P(dk) exp{−V(k)},

G4+(x1, x2, x3, x4)=Ok−x1,+k+x2,+k−x3, −k+x4, −P−G
2
+(x1, x2) G

2
−(x3, x4), (4.11)

where we used the fact that Ok−x, wk+y, −wP=0.
Let gw(x) be the free propagator, whose Fourier transform is gw(k)=

qh, 0(k)/(−ik0+wk), see (2.4). Then, we can write the above equation as

G4+(x1, x2, x3, x4)

=−l F dz g−(z−x4)Ok−x1,+k+x2,+k−x3, −k+z, −k+z,+k−z,+P

+l G2+(x1, x2) F dz g−(z−x4)Ok−x3, −k+z, −k+z,+k−z,+P

=−l F dz g−1(z−x4)O[k
−
x1,+k+x2,+]; [k

−
x3, −k+z, −k+z,+k−z,+]P

T. (4.12)
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From (4.12) we get

−G4+(x1, x2, x3, x4)

=l F dz g−(z−x4)Ok−x1,+; k
+
x2,+; rz,+P

T Ok−x3, −k+z, −P

+l F dz g−(z−x4)Orz,+; k
−
x1,+; k

+
x2,+; k

−
x3, − ; k

+
z, −P

T

+l F dz g−(z−x4)Ok−x1,+; k
+
x2,+; k

−
x3, − ; k

+
z, −P

T Orz,+P, (4.13)

where

rx, w=k+x, wk−x, w. (4.14)

The last addend is vanishing, since Orz, wP=0 by the propagator parity
properties. Then we get the identity, in terms of the Fourier transforms, as

−Ĝ4+(k1, k2, k3)

=lĝ−(k4) 5Ĝ2−(k3) Ĝ2, 1+ (k1−k2, k1)+
1
Lb

C
p
G4, 1+ (p; k1, k2, k3)6 ,

(4.15)

where k4=k1−k2+k3; see Fig. 2.
We shall call (4.15) the Dyson equation of our model.

Fig. 2. Graphical representation of Dyson equation.
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By using (4.9), (4.15) can be rewritten in the following way:

−Ĝ4+(k1, k2, k3)

=lĝ−(k4) 5Ĝ2−(k3) Ĝ2, 1+ (k1−k2, k2)+
1
Lb
G4, 1+ (0; k1, k2, k3)6

+lĝ−(k4)
1
Lb

C
p ] 0

Ĝ4+(k1−p, k2, k3)−Ĝ
4
+(k1, k2+p, k3)

D+(p)

+lĝ−(k4)
1
Lb

C
p ] 0
Ĥ4, 1+ (p; k1, k2, k3). (4.16)

4.3. Consequences of Ward Identities and Dyson Equation

By using the tree expansion described in Section 2, it is possible to
show that, in the model with cutoff function Ch, 0(k)−1, if |k̄|=ch and
ē=maxh [ j [ 0 |vFj | is small enough,

Ĝ2, 1w (2k̄, k̄)=−
Z (2)h

Z2hDw(k̄)
2
[1+O(ē2)], (4.17)

Ĝ2w(k̄)=
1

ZhDw(k̄)
[1+O(ē2)], (4.18)

Ĝ4+(k̄, −k̄, −k̄)=Z−2h |k̄|
−4 [−lh+O(ē2)], (4.19)

: 1
Lb

C
p ] 0
Ĝ4, 1w (p, k̄, −k̄, −k̄) : [ C |ē|

Z2h

Z (2)h
Zh

c−3h[cCē |h|−1], (4.20)

: 1
Lb

C
p ] 0

Ĝ4+(k̄−p, −k̄, −k̄)|
Dw(p)

:+: 1
Lb

C
p ] 0

Ĝ4+(k̄, −k̄+p, −k̄)|
Dw(p)

: [ C |ē| c
−3h

Z2h
,

(4.21)

: 1
Lb

C
p ] 0
Ĥ4, 1w (p, k̄, −k̄, −k̄) : [ C |ē|

Z2h

Z (2)h
Zh

c−3h[cCē |h|−1]. (4.22)

In Appendix A1 we give a short proof of (4.20), (4.21), (4.22); the
proofs of (4.17), (4.18), (4.19) follow very easily from the bound (2.43) and
are left to the reader.
Moreover, in refs. 6 the following bound was proved:

|k̄|=chS Cc−2hē2
Z (2)h
(Zh)2

[ |Ĥ2, 1w (2k̄, −k̄)| [ 2Cc−2hē 2
Z (2)h
(Zh)2

. (4.23)

Ward Identities and Vanishing of the Beta Function for d=1 175



Let us now discuss the main consequences of the previous bounds.
First of all (4.5), (4.17), (4.18), (4.23), together with Theorem (3.1),

imply that Zh/Z
(2)
h =1+O(l

2). This is a very non trivial statement; in fact,
limhQ −. log[Z

(2)
h−1/Z

(2)
h ]=g2(l) and limhQ −. log[Zh−1/Zh]=g(l), with

g2(l) and g(l) a priori different analytic functions of l. However, the
bound Zh/Z

(2)
h =1+O(l

2) implies that g=g2. Note that this result is the
same one would obtain if the correction term Ĥ2, 1 were not present.
Let us see now if it possible to prove the vanishing of the Beta func-

tion (in the form of Theorem (3.1)) directly from the Dyson equation
(4.15), as it is claimed in the physical literature, without any use of the
Luttinger model exact solution. Indeed, if one could neglect the term pro-
portional to Ĥ4, 1, as it is usually done, (4.16), (4.21), (4.17), (4.18), and
(4.19) would imply that lh=lZ (2)h /Zh+O(ē

2). Then, by a procedure
similar to that used in Section 3, one could prove at the same time that the
Beta function is vanishing and that Z (2)h /Zh=1+O(l

2). Note that this
result could not be obtained, by using only the Dyson equation (4.15),
because of the factor [cCē |h|−1] present in the bound (4.20).
On the other hand, the presence of corrections spoils the above

conclusion, because of the factor [cCē |h|−1] even in the bound (4.22), con-
trary to our initial expectations. However, the bound (4.22) cannot be
improved, unless cancellations at every order are taken into account, which
is just what we want to avoid, as this would be equivalent to the original
problem of proving cancellations directly in the Beta function. In fact, we
can find terms in our expansion, which behave as ē2Z−2h |h| c

−3h, whose sum
has the right behavior ē2Z−2h c−3h.
The conclusion is that our procedure does not allow to prove rigor-

ously the vanishing of the beta function through Ward identities and
Dyson equation. The only hope is that one can prove that the correction
terms go to 0 as the cutoff goes to infinity; however this is not a simple
task, since it requires one is able to study the ultraviolet problem in the
Thirring model.

APPENDIX A1

A1.1. Proof of (4.21)

The two sums on the l.h.s. of (4.21) can be studied in the same way.
Let us consider, for example, (Lb)−1;p ] 0 Ĝ

4
+(k̄1−p, k̄2, k̄3)/Dw(p), where

ki are momenta satisfying the relations

k̄1=k̄4=−k̄2=−k̄3=k̄, |k̄|=ch. (A1.1)
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Moreover, we shall consider only the case L=b=., as the analysis of
ref. 5 implies that the general case differs only by corrections which go to
zero as L, b Q.. Hence, from now on, we shall substitute (Lb)−1;p ] 0

with (2p)−2 > dp.
The support properties of the external propagator of momentum

k̄1−p imply that |p| [ c+ch, hence |p| [ c2, if ch is small enough, as we shall
suppose (again only to simplify the notation). Hence we can write, defining
q0(t) as in (2.5),

F
dp
(2p)2

Ĝ4+(k̄1−p, k̄2, k̄3)
Dw(p)

=F
dp
(2p)2

q0(c−2 |p|)
Ĝ4+(k̄1−p, k̄2, k̄3)

Dw(p)

=F
dp
(2p)2

qM(p)
Ĝ4+(k̄1−p, k̄2, k̄3)

Dw(p)
+ C

2

hp=hjM

F
dp
(2p)2

fhp (p)
Ĝ4+(k̄1−p, k̄2, k̄3)

Dw(p)
,

(A1.2)

where jM is defined so that c jM=Mch, with M=c2/(c−1), and qM(p) is a
smooth positive function with support in the ball |p| [ c jM, such that
qM(p)+q[jM, 0](p)=1 for |p| [ 1. Note that jM is defined so that, if hp \ hjM
and fhp (p) ] 0, then |k̄1−p| ¥ [chp −2, chp+2].
The bound (4.21) immediately follows from the following Lemma.

Lemma A1.1. If the momenta k̄i satisfy condition (A1.1), there
exists a constant C such that

F
dp
(2p)2

fhp (p) :
Ĝ4+(k̄1−p, k̄2, k̄3)

Dw(p)
: [ Cē

c−3h

Z2h
c−

1
2 (hp −h) if hp \ jM, (A1.3)

F
dp
(2p)2

qM(p) :
Ĝ4+(k̄1−p, k̄2, k̄3)

Dw(p)
: [ Cē

c−3h

Z2h
. (A1.4)

Proof. By (2.42), we can write

Ĝ (4)+ (k̄1−p, k̄2, k̄3)=C
.

n=1
C
−1

j0=h−1
C

y ¥Tj0, n, 4, 0

|Pv0 |=4

Ĝ4, y(k̄1−p, k̄2, k̄3), (A1.5)

where G4, yS̄4, 0, y, {+,+, −, −}.
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Look at the contribution Ĝ4, y, associated with a fixed tree y, and
suppose that fhp (p) ] 0, with jM [ hp.The scale j0 of v0 has to be equal to h
or h+1, since two of the external propagators, those with momenta k̄2
and k̄3, have scale h or h+1. Let us call h1 and h4 the scale indices of the
other two external propagators, those with momenta k̄1−p and k̄4−p; the
definition of jM implies that |hi−hp | [ 1 for i=1, 4. These two propagators
are associated with two endpoints of type f with scale hi+1 (see item 3
after Fig. 1); we shall call vi the non trivial vertices of y, of scale h̄i [ hi,
immediately preceding them and vp the higher vertex with n

f
v=2. Of course

the scale jp of vp has to be smaller that h̄1 and h̄4 and there is the possibility
that v1=v4=vp.
We shall consider three paths on the tree: the paths C1 and C4, con-

necting v1 and v4 with vp, and the path C connecting vp with v0. By (2.43), if
v ¥ C and |Pv |=4, dv=0; in all the other cases dv > 0. Hence, by using
(2.43), the fact, proved in ref. 5, that

0 < 1−Zj/Zj−1 [ Cē2, (A1.6)

and the remarks that |Pv | \ 2, -v ¥ y, and that on the path C there are at
most jp−h+2 vertices, we get, for p in the support of fhp (p),

|Ĝ4, y(k̄1−p, k̄2, k̄3)|

[ (Cē)n
c−2h

Zh
c
1
2 (jp −h) D

v ¨ C 2 C1 2 C4

c−dv

·
c−h1

`Zh1

c−h4

`Zh4
5 D
v ¥ C1 2 C4

1 `Zhv
`Zhv −1
2 c−dv6 5D

v ¥ C

1 Zhv
Zhv −1
2 c−1/2−dv6

[ (Cē)n c−2hp
c−2h

Z2h
c
1
2 (jp −h)= Zh̄1

Zhp
= Zh̄4
Zhp

D
v ¨ C

c−dv D
v ¥ C

c−1/2−dv. (A.7)

If we fix the scales jp, h̄1 and h̄4 of the vertices vp, v1 and v4, we can sum
over the sets Pv and the scale indices of the other vertices by using the
general procedure explained in ref. 5, since there is a factor smaller than
one in each vertex of the tree, as in the effective potential bounds. It is easy
to see, by using (A1.6), that the sum over the remaining scale indices of
c
1
2 (jp −h)`Zh̄1/Zhp `Zh̄4/Zhp (note that jp [ h̄i [ hp+1 and h [ jp [ hp+1)
is bounded by Cc (hp −h)/2. Hence we get the bound (A1.3), since the integra-
tion over p gives a factor c2hp, because of the support properties of fhp (p),
and |Dw(p)|−1 [ c−hp+1 if fhp (p) ] 0.
The bound (A1.4) is obtained essentially in the same way. One has

only to note that, if qM(p) ] 0, h1−h and h4−h are smaller of a finite
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number only dependent on M, so that the path C can contain only a finite
number of vertices. It follows that the sum over the trees with n normal
endpoints of |Ĝ4, y(k̄1−p, k̄2, k̄3)| can be bounded by (Cē)n c−4hZ−2h , which
implies (A1.4) since > dp

(2p)2
qM(p) |Dw(p)|−1 [ Cch. L

A1.2. Proof of the Bound (4.20)

We have to study the quantities Ĝ4, 1+ (p, k̄1, k̄2, k̄3) and (2p)
−2 > dp

Ĝ4, 1+ (p, k̄1, k̄2, k̄3), with the momenta k̄i satisfying condition (A1.1).
The support properties of the external propagator of momentum

k̄4−p (see Fig. 2) imply that |p| [ c+ch, hence we can proceed as in
Section A1.1, by writing

F
dp
(2p)2

Ĝ4, 1+ (p; k̄1, k̄2, k̄3)=F
dp
(2p)2

qM(p) Ĝ
4, 1
+ (p; k̄1, k̄2, k̄3)

+ C
2

hp=hjM

F
dp
(2p)2

fhp (p) Ĝ
4, 1
+ (p; k̄1, k̄2, k̄3).

(A.8)

The bound (4.20) immediately follows from the following Lemma.

Lemma A1.2. If the momenta k̄i satisfy condition (A1.1), there
exists a constant C such that, if fhp (p) ] 0 and hNhp=min{h, hp}, then

|Ĝ4, 1(p, k̄1, k̄2, k̄3)| [ Cē 2
c−4h

Z2h
c−hNhp

Z (2)hNhp
ZhNhp

; (A1.9)

moreover,

:F dp
(2p)2

fhp (p) Ĝ
4, 1(p, k̄1, k̄2, k̄3) :

[ Cē2
c−3h

Z2h
(1+Cē)hp −h

Z (2)h
Zh
, if hp \ jM, (A1.10)

:F dp
(2p)2

qM(p) Ĝ4, 1(p, k̄1, k̄2, k̄3) : [ Cē2
c−3h

Z2h

Z (2)h
Zh
. (A1.11)

Proof. We can write

G4, 1(p; k̄1, k̄2, k̄3)=C
.

n=1
C
−1

j0=h−1
C

y ¥Tj0, n, 4, 1

|Pv0 |=4

Ĝ4, 1, y(p, k̄1, k̄2, k̄3), (A1.12)
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where G4, 1, yS̄4, 1, y, {+,+, −, −,+}. As in the previous sections, we analyze the
consequences of the constraints on the scale indices, which follow from the
momenta values. Let us consider first the case fhp ] 0, with hp \ jM.
First of all, we note that there are 3 endpoints of type f and scale

[ h+1; hence j0 [ h+1. Let us call hf the scale of the first non trivial
vertex, say vf, immediately preceding the fourth vertex of type f, whose
momentum is equal to k̄4−p=k̄−p. For simplicity, we shall suppose that
this endpoint has scale hf+1 (see item 3 after Fig. 1); in fact the sum over
the scale index of the propagator does not change the bound, as one can
easily check. Moreover, we shall call hJ the maximum between the scales of
the two propagators associated with the endpoint of type J, vJ the non
trivial vertex (of scale hJ) immediately preceding it, and vp the higher vertex
with nfv=n

J
v=1. Finally Cf and CJ will be the paths on the tree y (possibly

empty) which connect vf and vJ with vp, while C will be the path connect-
ing vp with v0. In Fig. 3 we plot a typical tree, by using empty circles to
denote the special endpoints; the meaning of the dashed line is explained
below.
The constraint on hp implies that |hf−hp | [ 1. On the other hand,

since p=k1−k2, if k1 and k2 are the momenta of the two propagators
emerging from the endpoint of type J, the definition of hJ and the support
properties of the functions fj(k) imply that 2chJ+1 \ chp −1. It follows that
hJ \ hp−2− logc 2 and that the scale index jp of the vertex vp satisfies the
condition h [ jp [ hp+1. By proceeding as in the proof of (A1.7) and by
using also the remark that Z (2)hJ /ZhJ [ Z

(2)
hp /Zhpc

Cē2(hJ −hp), we get

|Ĝ4, 1, y(p, k̄1, k̄2, k̄3 | [ (Cē)n c−h
c−3h

(Zh)3/2
D

v ¨ C 2 Cf 2 CJ

c−dv

·
c−hf

`Zhf

Z (2)hJ
ZhJ
5 D
v ¥ Cf 2 C

1 `Zhv
`Zhv −1
2 c−dv6 5 D

v ¥ CJ

c−dv6

[ (Cē)n
c−4h

Z2h
c−hp
Z (2)hp
Zhp

D
v ¨ CJ

c−dv D
v ¥ CJ

c−dv+Cē
2
. (A1.13)

If v ¥ C and |Pv |=2, dv=0; in all the other cases dv > 0. Moreover, if
ṽp [ vp is the higher vertex belonging to C, such that |Pv |=2, all the ver-
tices v ¥ C such that v [ ṽp are trivial vertices with |Pv |=2, except v0 and,
possibly, the vertex immediately following v0 and belonging to C; these
vertices belong to a connected subpath C̃ of C, which can be empty and is
represented as a dashed line in Fig. 3. This claim easily follows from the
remark that, if v ¥ C and the cluster Lv has only two external k fields, one
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Fig. 3. A typical tree contributing to G4, 1(p; k̄1, k̄2, k̄3).

of these fields is contracted in the external propagator of momentum k̄4−p,
while the other one, by momentum conservation, has to be contracted in a
propagator with scale index equal to h or h+1, since the J field has
momentum p.
The previous considerations and the remark that the scale of the non

trivial vertex vf is essentially fixed, imply that the sum over the non trivial
vertices scale indices is equivalent to the sum over the length (difference
between the scale indices of the extreme vertices) of all paths connecting
two consecutive non trivial vertices, except C̃. On the other hand, we can
associate with each path of this type, of length m, a factor c−m/2, by
extracting c−1/2 from the factor c−dv, dv \ 1, associated with each vertex
belonging to it in the bound (A1.13). The remaining factors c−dv+1/2 are
used to perform the sum over the sets Pv, as in ref. 5.
Finally an easy explicit calculation shows that the trees with n=1

cancel out exactly under the condition (A1.1) on the momenta. It follows
that the sum over y of the l.h.s. of (A1.13) can be bounded as

|Ĝ4, 1(p, k̄1, k̄2, k̄3)| [ Cē2
c−4h

Z2h
c−hp
Z (2)hp
Zhp
. (A1.14)

Let us now consider (2p)−2 > dp fhp (p) Ĝ4, 1, y(p, k̄1, k̄2, k̄3); its bound
differs from the r.h.s. of (A1.13) for many reasons. First of all, there is a
factor c2hp related to the integration volume. Moreover, if |C̃| > 0,
(2p)−2 > dp fhp (p) Ĝ4, 1, y(p, k̄1, k̄2, k̄3) is of the form G1(k̄4) · ĝ (h)(k̄4)
·G2(k̄1, k̄2, k̄3, k̄4), where G1(k̄4) is a sum of graphs with an odd number of
propagators of scale greater or equal to h̃p, the scale of ṽp. It follows that
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G1(0)=0, hence we can freely (i.e., without introducing new running cou-
pling constants) regularize it in the usual way, so getting an improving
factor c−(h̃p −h) in the bound.
The same parity argument allows us to show that, if |Pv |=2, 4, we can

perform all regularizations by increasing the Taylor expansion order by one
unit, without introducing new running coupling constants; for the same
reason, if |Pv |+2n

J
v=6, we can freely perform a first order regularization.

Hence, we can improve the bound (2.43), by substituting dv with

d̄v=˛
dv+1 if nfv+n

J
v [ 1, |Pv |+2n

J
v [ 6

dv otherwise.
(A1.15)

All these considerations, together with (A1.13), imply that

:F dp
(2p)2

fhp (p) Ĝ4, 1, y(p, k̄1, k̄2, k̄3) :

[ (Cē)n
c−3h

Z2h
chp − h̃p

Z (2)hp
Zhp

D
v ¨ CJ 2 C̃

c−d̄v D
v ¥ CJ

c−d̄v+Cē
2

[ (Cē)n
c−3h

Z2h

Z (2)hp
Zhp

D
v ¨ CJ 2 C

c−dv D
v ¥ CJ

c−dv+Cē
2
D
v ¥ C

c−d
g
v , (A1.16)

with dgv=0, if |Pv |=2, 4, and d
g
v > 0, if |Pv | > 4.

Let us now perform the sum over the scale indices, by proceeding as in
the proof of (A1.14). The bound is dominated by the trees such that
|Pv |=4, if ṽp < v < vp, since these vertices can be non trivial. For these
trees, the sum over the the scale indices associated with the non trivial ver-
tices belonging to C0 C̃, each of them carrying at least a factor Cē, can be
bounded by ;hp − h̃p −1

r=0 (hp − h̃p −1r )(Cē) r. Hence, it is not hard to deduce from
(A1.16), by using also that Z (2)hp /Zhp [ Z

(2)
h /Zhc

Cē 2(hp −h) and the remark
before (A1.14) about the first order terms, the bound (A1.10).
Let us now suppose that |p| [Mch. The previous analysis can be

repeated, but the constraints on the scale indices are different. There is
essentially no constraint on hJ, except the trivial one hJ \ h, but
hf−h [ 1+log(M+1), since |k̄4−p| [ (M+1) ch, so that h [ hp [ h+
logc(M+1). Hence the length of the path C is bounded uniformly in y and
h, so that we get the bound (A1.11), as well as

|Ĝ4, 1(p, k̄1, k̄2, k̄3)| [ Cē2
c−5h

Z2h

Z (2)h
Zh
. (A1.17)

The bound (A1.9) immediately follows from (A1.17) and (A1.14). L
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Sketch of the Proof for the Bound (4.22)

In ref. 6 we have shown that there is an expansion for H4, 1w similar to
that used for G4, 1w . The only important difference is that we have now three
different special endpoints, associated with the field J and related to the
field Tx, w multiplying J in (4.7). These endpoints were called in ref. 6 of
type J and subtype T, Z+, and Z−, respectively. Moreover, to the endpoints
of type Z+ and Z− two new renormalization constants were associated,
verifying the following bound

c0l2 [ :
Z (3,+)j

Z (2)j
: [ 2c0l2, c0 |l| [ :

Z (3, −)j

Z (2)j
: [ 2c0 |l|, j ¥ [h, −1]. (A1.18)

Then, we can proceed as in the proof of the bound (4.20), by first
proving a Lemma similar to Lemma A1.2. In fact, the trees with the special
endpoint of subtype Z+ can be treated exactly as the trees contributing to
Ĝ4, 1w , as concerns the dependence on h, because the only difference is that
the scale index of the special endpoint can not have the value +1.
However, since Z (3,+)h is of order ē2, these trees give a contribution of
minimal order ē 4 instead of ē2.
Let us now consider the trees with the special endpoint of subtype Z−.

The corresponding Feynman graphs are topologically equivalent to graphs
contributing to Ĝ4, 1w , if we substitute the special endpoint with a generic
graph with two external k fields of w index opposite to that of the external
field, see (153) of ref. 6. It easily follows, since Z (3, −)h is of order ē, that
these trees are of minimal order ē2 and satisfy the same bound as the
others, as concerns the dependence on h.
We still have to consider the trees with the special endpoint of subtype

T, whose scale index hT (see again ref. 6) is equal to +1, h+2 or h+1. If
hT=+1, by the usual arguments we can say that the value of the tree is
exponentially depressed as hQ −. with respect to the others; moreover, it
is easy to see that it is of minimal order ē2. If hT ] 0, the value of the tree is
depressed only by a factor Z (2)h , but it is still of minimal order ē2, since
there is a cancellation between the first order contribution, as in the case
of Ĝ4, 1w .
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